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Three-dimensional growth morphologies in diffusion-controlled channel growth

T. Abel, E. Brener,* and H. Müller-Krumbhaar
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 23 July 1996!

The growth of a supercritical nucleus from a diffusion field is studied numerically using a phase-field model.
This represents growth of a crystal with small or vanishing anisotropy. We find three-dimensional cooperating
multiplets instead of dendrites, in analogy to the doublons found previously in two dimensions. Triplet struc-
tures in particular appear to be the building blocks of the resulting morphology under conditions of free growth
in three dimensions.@S1063-651X~97!02506-3#

PACS number~s!: 81.10.Aj, 05.70.Fh, 68.70.1w, 81.30.Fb
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Growth phenomena often occur in conjunction with a fi
order phase transition. There a critical nucleus is formed
some thermodynamical fluctuation. This nucleus afterwa
grows in a deterministic way to an in principle arbitrari
large size. The growth of a crystal from the melt or from
solution is a typical example of such a process@1,2#.

This type of phase change usually requires the trans
of at least one conserved quantity, the solute material or
latent heat of solidification, which is transported via diff
sion. While in two-dimensional geometry substant
progress has been made during recent years, it is still ra
unclear what happens in three dimensions, where the in
face between the growing solid and the nourishing fluid is
at least two-dimensional object. Particular interest is devo
to the behavior on a long time scale, where one can ex
universal features to characterize the system dynamics.

It has been known for about three decades@3# that such a
growing nucleus becomes unstable as its radius beco
larger than a few times the critical radius. If the surfa
tension is anisotropic, for example due to crystalline anis
ropy, it is generally accepted that the nucleus finally defor
into a dendritic pattern like a snow flake~@1,2#!. The limit of
vanishing anisotropy, however, is much less clear.

There has been a recent attempt to formulate a the
@4,5# for the fundamental morphologies and the most r
evant parameters controlling their appearance. This

*On leave from ISSP RAN, Chernogolovka, 142432, Russia.

TABLE I. Parameters and results of the simulations.LZ is the
cell-length in the growth direction~discretized in 200 grid-points!,
LX andLY the lateral size, Ltot is the total length grown after t
system has settled to essentially steady behavior, andl D52D/v is
the diffusion length observed as measure for the inverse gro
rate. The other model parameters weret51, j51.5, V051,
m059, D51, andD50.8, all lengths in arbitrary units.

Fig. No. LX LY LZ Ltot l D

1 7.5 50 100 7000 1.70
2 15 100 100 800 1.57
3 30 30 100 2200 1.61
4, 5 60 60 100 8600 1.62
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based on scaling relations together with asymptotic match
requirements. The resulting morphology diagram and its
cent modification@5# usessupercooling vs crystalline anisot
ropy as the principal axes, and discriminates between s
weed and dendrites as the basic patterns, where the den
patterns are characteristic for anisotropic growth conditio

Some basic predictions of this theory have been rece
confirmed in the two-dimensional case. For typical expe
mental situations@6,7# the compact dendritic growth mor
phology then is the most likely one to occur, and the the
for the growth of single dendrites@1,8,9# appears to describe
the situation quite well. A summary can be found in@10#.

FIG. 1. Symmetry-broken finger growing in a flat cell with re
flecting walls. For convenience, only the surface of the grow
object is shown in all figures. The small satellites seen on the s
are dying away very slowly during growth. When the cell thickne
is further reduced, a two-dimensional doublon is finally obtain
Note, however, that only one-fourth of this cell was computed;
whole cell shown here was reconstructed by mirror symmetry.
Table I for parameters used in the computation of all figures.
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The limit of vanishing crystalline anisotropy has been
cently investigated in detail@11,12#, and leads to a differen
growth pattern. This seaweedlike pattern consists of s
structures which are calleddoublons. They resemble den
dritic patterns, but consist of cooperating symmetry-brok
double fingers@11–13#.

In principle, a morphology diagram as in Ref.@5# could
also have been proposed for the threedimensional case
on a much weaker basis. What seems to have been se
quite recently is the growth of single dendrites in three
mensions. After a description of the three-dimensional d
drite tip @14#, an analytical solution for the tail-region wa
also obtained@15#. This was further elaborated to account f
sidebranches under the influence of noise@16#. The theory
gives detailed scaling relations for the various geometr
aspects of the three-dimensional dendrite structure, whic
quite far from the almost parabolic shape obtained in
two-dimensional case. Recent experiments@7# gave striking
quantitative agreement with some crucial predictions of t
theory. Thus we may assume that the basic mechanism
the formation and growth of three-dimensional dendrites
understood.

It is still an open problem what happens in the limit
very small or vanishing anisotropy. One may expect t
patterns similar to thedoublonsobserved in two dimension
@11# may also exist in three dimensions, in some analo
with the dendrites, but no details are known so far. It is

FIG. 2. Three-dimensional doublon. Same configuration as
Fig. 1, but here the whole cell was used in the computation,
twofold or fourfold mirror symmetry was exploited. The sidewa
of the cell again have mirror conditions. Just like the doublo
obtained in two dimensions~Refs. @11# and @12#! the three-
dimensional doublon here consists of two symmetry-broken fing
which appear to stabilize each other during growth. This pat
resembles experimental results~Refs.@28# and@29#! for directional
solidification.
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purpose of this paper to shed some light on this region
parameter space where one must expect growth patt
which are quite different from the dendritic patterns observ
for larger crystalline anisotropies.

We used aphase-field model@13,17–24# to simulate crys-
tal growth under control of a diffusion field in a channel ov
long times. The standard version of a phase-field model
scribes the time evolution of an order-parameter fieldf
which is not conserved, but which is coupled to at least o
second fieldu which obeys a continuity equation. This fiel
u describes a conserved variable like energy or a chem
component. The equations of motion can be derived from
functional for the appropriate thermodynamic potential of t
system. They can be written as a set of coupled partial
ferential equations in time and space@13,17–25#:

t
]

]t
f~x,t !5j2¹2f2V0~f32f!1m0

dG

df
~u1G!,

~1!

]

]t
u~x,t !5D¹2u2

]

]t
G

whereG(f)5f/(11f2) is a function which switches be
tween61/2 asf varies between21 and 1 from solid to
liquid. The solid-liquid coexistence corresponds tou50, and
we supercool the distant liquid byu52D. Furthermore,t is
a time scale,j a correlation length, andV0 characterizes a
potential barrier between the pure statesf561. The model
is rather similar to the one used by Kobayashi@24#, where
f561 in the pure solid or liquid phase, also under noneq
librium conditions. Details are not important here, and w
be discussed in a different context@25#.

The model was tested quantitatively in detail in one, tw
and three dimensions for symmetrical geometries, and als
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FIG. 3. The channel has now been made quadratic in c
section, in contrast to the rather flat channels shown in Figs. 1
2. A quadruplet of symmetry-broken fingers is growing steadily
the center. This fourfold symmetry in the center is imposed
mirror symmetry, so that we see four identical images around
center. This figure shows that asymmetrical fingers may be the
sic ingredients of the growth structure, but does not yet allow c
clusions about their cooperation~see following figures!.
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comparison with results on dendritic growth in two dime
sions obtained previously by a sharp-interface calcula
@11,26#. In particular, we have shown that the numerical a
isotropy due to the discretization is not significant. For t
present purpose this will be sufficient, since all our ba
results can be presented in scaled form. These results
given in the figures, and discussed in the corresponding
tions for convenience. All simulations were performed at
same physical parameters but for different cell geometr
see Table I.

Results for growth in a channel with reflecting walls a
shown in Figs. 1–3, and are discussed in the captions.
most prominent feature is that multiplet structures of the
terface are found, while the environmental conditions ap
from the channel geometry are isotropic, so that dendr
structures should not exist. While the symmetry of the m
tiplets in these narrow channels is determined largely by
symmetry of the channel walls, we also found some mu
plets not imposed by the wall symmetry as our most imp

FIG. 4. This is one of the central results. In contrast to
previous figures, this computation was done using periodic bou
ary conditions at the channel sidewalls. The crucial point her
that thisself-organized triplet structureis not imposed by symme
try, and that it consists of threecooperating symmetry-broken fin
gertips. The pattern has grown over 100 times the width of the c
and over 1000 times a typical tip radius of the fingers without a
appreciable change. The initial condition was a flat interface wit
central bump. The initial condition disappeared during a rather c
otic looking dynamically evolving pattern, until it reached this e
sentially steadily growing pattern.
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tant results. This is most pronounced in Figs. 4 and 5, n
for periodic boundary conditionson the sidewalls as a bette
approximation to free growth conditions than the reflecti
condition.

In summary, the results of Figs. 2, 4, and 5 prove h
within numerical possibilities that the observed multip
structures ofcooperating symmetry-broken fingersare also
dynamically stable objects in three dimensions, as gene
zations of the two-dimensional doublons. They dominate
morphology for low enough anisotropy, where dendrit
cease to exist. A hexagonal or triplet structure should
expected to occur under free growth conditions from ba
symmetry considerations@27#, since these growth problem
do not have reflection symmetry about some average in
face position. The resulting multiplets, consisting
symmetry-broken cooperating fingers of the growing pha
finally seem to be the basic building blocks for the comp
seaweed morphology; in particular, the triplet structure
pears to be characteristic of free growth. Finally we hope
extend our previous studies of the morphology diagram w
the help of these results.

We thank T. Ihle, C. Misbah, and D. Temkin for valuab
discussions. This work was partly supported by grants fr
the DFG and VW.
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FIG. 5. Same triplet as shown in Fig. 4, but now seen from
top. Note that the apparent axis of the triplet does not exactly
incide with the orientation of the computational grid, which is cle
proof of the self-organizing abilities of these patterns. This pict
can be continued in all four directions by periodic continuation.
.
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