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Three-dimensional growth morphologies in diffusion-controlled channel growth
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The growth of a supercritical nucleus from a diffusion field is studied numerically using a phase-field model.
This represents growth of a crystal with small or vanishing anisotropy. We find three-dimensional cooperating
multiplets instead of dendrites, in analogy to the doublons found previously in two dimensions. Triplet struc-
tures in particular appear to be the building blocks of the resulting morphology under conditions of free growth
in three dimensiond.51063-651X97)02506-3

PACS numbse(s): 81.10.Aj, 05.70.Fh, 68.768.w, 81.30.Fb

Growth phenomena often occur in conjunction with a firstbased on scaling relations together with asymptotic matching
order phase transition. There a critical nucleus is formed byequirements. The resulting morphology diagram and its re-
some thermodynamical fluctuation. This nucleus afterwardsent modificatiorf5] usessupercooling vs crystalline anisot-
grows in a deterministic way to an in principle arbitrarily ropy as the principal axes, and discriminates between sea-
large size. The growth of a crystal from the melt or from aweed and dendrites as the basic patterns, where the dendritic
solution is a typical example of such a procgsZ]. patterns are characteristic for anisotropic growth conditions.

This type of phase change usually requires the transport Some basic predictions of this theory have been recently
of at least one conserved quantity, the solute material or theonfirmed in the two-dimensional case. For typical experi-
latent heat of solidification, which is transported via diffu- mental situationg6,7] the compact dendritic growth mor-
sion. While in two-dimensional geometry substantial phology then is the most likely one to occur, and the theory
progress has been made during recent years, it is still rathéor the growth of single dendritd4,8,9 appears to describe
unclear what happens in three dimensions, where the intethe situation quite well. A summary can be found[&0].
face between the growing solid and the nourishing fluid is an
at least two-dimensional object. Particular interest is devoted
to the behavior on a long time scale, where one can expect
universal features to characterize the system dynamics.

It has been known for about three decafi@shat such a
growing nucleus becomes unstable as its radius becomes
larger than a few times the critical radius. If the surface
tension is anisotropic, for example due to crystalline anisot-
ropy, it is generally accepted that the nucleus finally deforms
into a dendritic pattern like a snow flakgl,2]). The limit of
vanishing anisotropy, however, is much less clear.

There has been a recent attempt to formulate a theory
[4,5] for the fundamental morphologies and the most rel-
evant parameters controlling their appearance. This was

TABLE I|. Parameters and results of the simulatiobZ. is the
cell-length in the growth directiofdiscretized in 200 grid-points
LX andLY the lateral size, Ltot is the total length grown after the
system has settled to essentially steady behavior/and2D/v is
the diffusion length observed as measure for the inverse growth
rate. The other model parameters werel, ¢=1.5, Vy=1,
no=9,D=1, andA=0.8, all lengths in arbitrary units.

Fig. No. LX LY Lz Ltot i
1 7.5 50 100 7000 1.70
FIG. 1. Symmetry-broken finger growing in a flat cell with re-
2 15 100 100 800 1.57 . . -
1 29 161 flecting walls. For convenience, only the surface of the growing
3 30 30 00 00 -6 object is shown in all figures. The small satellites seen on the sides
4,5 60 60 100 8600 1.62

are dying away very slowly during growth. When the cell thickness

is further reduced, a two-dimensional doublon is finally obtained.

Note, however, that only one-fourth of this cell was computed; the

whole cell shown here was reconstructed by mirror symmetry. See
*On leave from ISSP RAN, Chernogolovka, 142432, Russia.  Table | for parameters used in the computation of all figures.
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FIG. 3. The channel has now been made quadratic in cross
section, in contrast to the rather flat channels shown in Figs. 1 and
2. A quadruplet of symmetry-broken fingers is growing steadily in
the center. This fourfold symmetry in the center is imposed by
mirror symmetry, so that we see four identical images around the

FIG. 2. Three-dimensional doublon. Same configuration as irffe€nter. This figure shows that asymmetrical fingers may be the ba-
Fig. 1, but here the whole cell was used in the computation, naic ingredients of the growth structure, but does not yet allow con-
twofold or fourfold mirror symmetry was exploited. The sidewalls clusions about their cooperatigsee following figurep
of the cell again have mirror conditions. Just like the doublons
obtained in two dimensiongRefs. [11] and [12]) the three-
dimensional doublon here consists of two symmetry-broken finger
which appear to stabilize each other during growth. This patterq
resembles experimental resulRefs.[28] and[29]) for directional
solidification.

purpose of this paper to shed some light on this region in
arameter space where one must expect growth patterns
hich are quite different from the dendritic patterns observed
or larger crystalline anisotropies.
We used gphase-field modéll3,17-24 to simulate crys-
tal growth under control of a diffusion field in a channel over

- L : : long times. The standard version of a phase-field model de-
The limit of vanishing crystalline anisotropy has been re-g.ripes the time evolution of an order-parameter figid

cently investigated in detajll 1,12}, and leads to a different \yhich is not conserved, but which is coupled to at least one
growth pattern. This seaweedlike pattern consists of subsecong fields which obeys a continuity equation. This field

structures which are calledoublons They resemble den- ; gescribes a conserved variable like energy or a chemical
dritic patterns, but consist of cooperating symmetry-broker,,mponent. The equations of motion can be derived from a
double finger§11-13. functional for the appropriate thermodynamic potential of the

In principle, a morphology diagram as in R¢8] could  gystem. They can be written as a set of coupled partial dif-
also have been proposed for the threedimensional case, ential equations in time and spalds,17—25;

on a much weaker basis. What seems to have been settled
quite recently is the growth of single dendrites in three di- d T 3 dar
mensions. After a description of the three-dimensional den- 7 5 d(X,1)=£V hp—Vo(d —¢)+,uo@(u+l“),
drite tip [14], an analytical solution for the tail-region was (1)
also obtainedl15]. This was further elaborated to account for d , 0
sidebranches under the influence of ndisé]. The theory U )=DVu——T
gives detailed scaling relations for the various geometrical
aspects of the three-dimensional dendrite structure, which ighereT'(¢) = ¢/(1+ ¢?) is a function which switches be-
quite far from the almost parabolic shape obtained in théween £1/2 as¢ varies between-1 and 1 from solid to
two-dimensional case. Recent experimditsgave striking  liquid. The solid-liquid coexistence correspondsite 0, and
guantitative agreement with some crucial predictions of thatve supercool the distant liquid hy= — A. Furthermorer is
theory. Thus we may assume that the basic mechanism fa time scale£ a correlation length, an¥, characterizes a
the formation and growth of three-dimensional dendrites igotential barrier between the pure sta#ies = 1. The model
understood. is rather similar to the one used by KobayaEhi], where

It is still an open problem what happens in the limit of ¢= =1 in the pure solid or liquid phase, also under nonequi-
very small or vanishing anisotropy. One may expect thatibrium conditions. Details are not important here, and will
patterns similar to theloublonsobserved in two dimensions be discussed in a different contd®25].
[11] may also exist in three dimensions, in some analogy The model was tested quantitatively in detail in one, two
with the dendrites, but no details are known so far. It is theand three dimensions for symmetrical geometries, and also in
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FIG. 4. This is one of the central results. In contrast to the FIG. 5. Same triplet as shown in Fig. 4, but now seen from the

previous figures, this computation was done using periodic bound,t-Op,' Notg that thg appf'irent axis of the trlplet dogs not. exgctly co-
ary conditions at the channel sidewalls. The crucial point here iénmde with the onentat!o_n of th_e_ F:omputatlonal grid, Whlch IS f:lear
that thisself-organized triplet structurés not imposed by symme- proof of the self-organizing abilities of these patterns. This picture

try, and that it consists of threepoperating symmetry-broken fin- 2" be continued in all four directions by periodic continuation.
gertips The pattern has grown over 100 times the width of the cell

and over 1000 times a typical tip radius of the fingers without anytant results. This is most pronounced in Figs. 4 and 5, now
appreciable change. The initial condition was a flat interface with &or periodic boundary conditionen the sidewalls as a better
central bump. The initial condition disappeared during a rather chaapproximation to free growth conditions than the reflection
otic looking dynamically evolving pattern, until it reached this es- condition.

sentially steadily growing pattern. In summary, the results of Figs. 2, 4, and 5 prove here

comparison with results on dendritic arowth in two dimen_within numerical possibilities that the observed multiplet
P 9 structures ofcooperating symmetry-broken fingesise also

sions obtained previously by a sharp-interface CaICUIat'O'aynamically stable objects in three dimensions, as generali-

[11,26. In particular, we have shown that the numerical an-; ations of the two-dimensional doublons. They dominate the

isotropy due to the discretization is not significant. For th.emorphology for low enough anisotropy, where dendrites

present purpose this will pe sufficient, since all our baSICcease to exist. A hexagonal or triplet structure should be
results can be presented in scaled form. These results

aé?(pected to occur under free growth conditions from basic

given in the figures, and d‘?'cusse.d in the corresponding CaQ‘.’ymmetry consideratior®27], since these growth problems
tions for convenience. All simulations were performed at thedo not have reflection symr’netry about some average inter-
same physical parameters but for different cell geometrie

see Table 1. Face position. The resulting multiplets, consisting of

Results for growth in a channel with reflecting walls aresymmetry-broken cooperating fingers of the growing phase,

shown in Figs. 1-3. and are discussed in the captions _I_hfinally seem to be the basic building blocks for the compact
i 9 .tf t is that multiplet struct P fth. Nesaweed morphology; in particular, the triplet structure ap-
most prominent feature 1S that mulliplet Structures ortne In-, o, ¢ 14 pe characteristic of free growth. Finally we hope to

terface are found, while the environmer_ltal conditions apart,tend our previous studies of the morphology diagram with
from the channel geometry are isotropic, so that dendrltl(ihe help of these results

structures should not exist. While the symmetry of the mul-
tiplets in these narrow channels is determined largely by the We thank T. Ihle, C. Misbah, and D. Temkin for valuable
symmetry of the channel walls, we also found some multi-discussions. This work was partly supported by grants from
plets not imposed by the wall symmetry as our most importhe DFG and VW.
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